$\mu = 2.00 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.020$

 $0.28 \times 0.26 \times 0.19 \text{ mm}$

15475 measured reflections

6141 independent reflections

5242 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{4,4'-[(2,2'-bi-1*H*-imidazole-1,1'diyl)dimethylene]dipyridinium} β-octamolybdate

Ya-Qian Lan, Jun-Sheng Qin and Zhong-Min Su*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: ifmc9291@yahoo.com.cn

Received 20 October 2007; accepted 22 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.023; wR factor = 0.054; data-to-parameter ratio = 16.2.

The title compound, $(C_{18}H_{18}N_6)_2[Mo_8O_{26}]$, was produced by hydrothermal reaction of an acidified aqueous solution of Na₂MoO₄ and 1,1'-bis(pyridin-4-ylmethyl)-2,2'-bi-1*H*-imidazole (hereafter *L*). The structure consists of the β -octamolybdate anions having a crystallographic center of symmetry and protonated $[H_2L]^{2+}$ cations. The $[H_2L]^{2+}$ cations link β -octamolybdate anions, generating a twodimensional hydrogen-bonded supramolecular sheet.

Related literature

For related literature on polyoxometalate (POM) chemistry, see: Pope (1983). Chen *et al.* (2002), Lu *et al.* (2002) and Reinoso *et al.* (2005) describe how the formation of metal complexes of polyoxometalates influences the POM frameworks and improves their electronic and magnetic properties.

Experimental

Crystal data

$(C_{18}H_{18}N_6)_2[Mo_8O_{26}]$	a = 23.1640 (4) Å
$M_r = 1820.28$	b = 10.4740 (5) Å
Monoclinic, $C2/c$	c = 22.7770 (8) Å

 $\beta = 112.494 (1)^{\circ}$ $V = 5105.7 (3) Å^{3}$ Z = 4Mo K α radiation

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.481, T_{\rm max} = 0.684$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.023 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.054 & \text{independent and constrained} \\ S &= 1.01 & \text{refinement} \\ 6141 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.32 \text{ e } \text{ Å}^{-3} \\ 378 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.48 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N5-H5N\cdotsO11^{i}$ $N6-H6N\cdotsO9^{ii}$	0.79 (3) 0.79 (3)	2.09 (3) 2.29 (4)	2.801 (3) 2.923 (3)	150 (3) 138 (3)
Symmetry codes: (i) _	$r \perp \frac{3}{2} - v - \frac{1}{2} - v$	z: (ii) x _y z ⊥	1	

Symmetry codes: (i) $-x + \frac{3}{2}, -y - \frac{1}{2}, -z$; (ii) $x, -y, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

We thank the Changjiang Scholars and Innovative Research Team in Universities Program, the National Natural Science Foundation of China (No. 20573016) and the Science Foundation for Young Teachers of Northeast Normal University (No. 20070309) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2074).

References

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, J., Lu, S., Yu, R., Chen, Z., Huang, Z. & Lu, C. (2002). *Chem. Commun.* pp. 2640–2641.
- Lu, C.-Z., Wu, C.-D., Zhuang, H.-H. & Huang, J.-S. (2002). Chem. Mater. 14, 2649–2655.
- Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.
- Reinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., Felices, L. S. & Beitia, J. I. (2005). *Inorg. Chem.* 44, 9731–9742.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2817 [doi:10.1107/S1600536807052294]

Bis{4,4'-[(2,2'-bi-1*H*-imidazole-1,1'-diyl)dimethylene]dipyridinium} β -octamolybdate

Y.-Q. Lan, J.-S. Qin and Z.-M. Su

Comment

Important advances in polyoxometalate (POM) chemistry (Pope, 1983) have recently been made in the coordination chemistry of polyoxoanions with classical transition metal coordination complexes or fragments. The introduction of metal complexes does not only enrich the frameworks of polyoxometalates but also ameliorates their electronic and magnetic properties (Chen *et al.*, 2002; Lu *et al.*, 2002; Reinoso *et al.*, 2005). During our ongoing studies of such materials, we obtained the title compound, and present its crystal structure here.

The asymmetric part of the unit cell contains each one $[H_2L]^{2+}$ cation and half a $[Mo_8O_{26}]^{4-}$ anion. The complete $[Mo_8O_{26}]^{4-}$ moiety is generated from the asymmetric unit atoms by a crystallographic inversion center (Fig. 1). It consists of eight edge-sharing MoO₆ octahedra and displays the characteristic β -octamolybdate arrangement. Through N—H···O hydrogen bonds each protonated $[H_2L]^{2+}$ cation is linked two $[Mo_8O_{26}]^{4-}$ anions, and each $[Mo_8O_{26}]^{4-}$ anion joins four protonated $[H_2L]^{2+}$ cations (see the hydrogen bonding table for numerical values). The hydrogen bonds in the title compound thus create a two-dimensional supramolecular layerlike structure (Fig. 2).

Experimental

A mixture of Na₂MoO₄·2H₂O (0.242 g, 1.0 mmol) and *L* (0.316 g, 1.0 mmol) in water (10 ml) was adjusted with HCl (6*M*) to pH = 2. Then the mixture was placed in a 23 ml Teflon-lined autoclave and kept under autogenous pressure at 150 °C for 3 days. After the mixture was cooled to room temperature at 10°C h⁻¹, colorless crystals of the title compound were obtained.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97 Å, and $U_{iso}=1.2U_{eq}$ (C). The H atoms of N5 and N6 were located in a difference Fourier map and then refined isotropically.

Figures

Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (iii) 1 - x, -y, -z. Oxygen atom created by the inversion center are unlabled for clarity.

Fig. 2. Ball and stick representation of the two-dimensional supramolecular structure of the title compound.

bis{4,4'-[(2,2'-bi-1H-imidazole-1,1'-diyl)dimethylene]dipyridinium} β-octamolybdate

Z = 4
$F_{000} = 3520$
$D_{\rm x} = 2.368 { m Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
$\theta = 1.9 - 28.3^{\circ}$
$\mu = 2.00 \text{ mm}^{-1}$
T = 293 (2) K
Block, colorless
$0.28\times0.26\times0.19~mm$

Data collection

Bruker APEX CCD area-detector diffractometer	6141 independent reflections
Radiation source: fine-focus sealed tube	5242 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 293(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -29 \rightarrow 30$
$T_{\min} = 0.481, \ T_{\max} = 0.684$	$k = -13 \rightarrow 8$
15475 measured reflections	<i>l</i> = −29→28

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.023$

 $wR(F^2) = 0.054$

S = 1.02

6141 reflections

378 parameters

Primary atom site location: structure-invariant direct Exmethods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0237P)^2 + 2.9429P]$ where $P = (F_0^2 + 2F_c^2)/3$

$$(\Delta/\sigma)_{max} = 0.003$$

 $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.89870 (14)	-0.0869 (3)	0.27475 (14)	0.0441 (7)
H1	0.9358	-0.1323	0.2928	0.053*
C2	0.84466 (13)	-0.1193 (3)	0.28019 (13)	0.0405 (7)
H2	0.8379	-0.1887	0.3022	0.049*
C12	0.87836 (16)	0.0072 (3)	0.03172 (16)	0.0545 (8)
H12	0.8468	-0.0268	-0.0039	0.065*
C3	0.83246 (12)	0.0547 (2)	0.22249 (12)	0.0315 (6)
C4	0.80217 (12)	0.1615 (2)	0.18149 (12)	0.0322 (6)
C5	0.78785 (14)	0.3224 (3)	0.11565 (13)	0.0402 (7)
Н5	0.7941	0.3871	0.0907	0.048*
C6	0.73332 (14)	0.2882 (3)	0.11943 (13)	0.0411 (7)
Н6	0.6950	0.3267	0.0968	0.049*
C7	0.89781 (12)	0.2422 (3)	0.16363 (14)	0.0378 (6)
H7A	0.9237	0.2246	0.2077	0.045*
H7B	0.9089	0.3262	0.1533	0.045*
C8	0.91118 (12)	0.1443 (2)	0.12192 (12)	0.0325 (6)
С9	0.97181 (14)	0.1054 (3)	0.13511 (14)	0.0427 (7)
Н9	1.0045	0.1378	0.1702	0.051*
C10	0.98359 (15)	0.0179 (3)	0.09575 (16)	0.0483 (8)
H10	1.0243	-0.0082	0.1041	0.058*
C11	0.86399 (14)	0.0944 (3)	0.06898 (15)	0.0466 (7)
H11	0.8228	0.1197	0.0587	0.056*
C13	0.73548 (12)	-0.0334 (3)	0.23536 (12)	0.0336 (6)
H13A	0.7248	-0.1209	0.2410	0.040*
H13B	0.7117	-0.0102	0.1915	0.040*
C14	0.71528 (12)	0.0512 (2)	0.27743 (12)	0.0316 (6)
C15	0.65174 (13)	0.0563 (3)	0.26529 (13)	0.0385 (6)
H15	0.6234	0.0126	0.2307	0.046*
C16	0.63082 (16)	0.1256 (3)	0.30408 (15)	0.0503 (8)
H16	0.5883	0.1298	0.2959	0.060*
C17	0.7328 (2)	0.1859 (3)	0.36671 (16)	0.0633 (10)
H17	0.7600	0.2301	0.4018	0.076*
C18	0.75615 (15)	0.1192 (3)	0.32810 (14)	0.0486 (8)

H18	0.7987	0.1203	0.3362	0.058*
N1	0.74194 (10)	0.1887 (2)	0.16133 (11)	0.0384 (5)
N2	0.83244 (10)	0.2425 (2)	0.15601 (11)	0.0345 (5)
N3	0.80131 (10)	-0.0286 (2)	0.24644 (10)	0.0329 (5)
N4	0.89177 (11)	0.0223 (2)	0.23895 (11)	0.0409 (6)
N5	0.93715 (14)	-0.0286 (3)	0.04640 (14)	0.0485 (7)
N6	0.67189 (17)	0.1870 (3)	0.35373 (15)	0.0588 (8)
01	0.54584 (8)	0.29320 (16)	0.04539 (8)	0.0358 (4)
O2	0.48100 (9)	0.19921 (19)	0.13672 (10)	0.0456 (5)
03	0.50867 (8)	-0.0374 (2)	0.18620 (8)	0.0414 (5)
O4	0.49368 (7)	-0.15179 (15)	0.06816 (7)	0.0262 (4)
05	0.56402 (7)	0.04669 (16)	0.10224 (7)	0.0265 (4)
O6	0.54342 (7)	-0.07885 (15)	-0.01015 (7)	0.0253 (4)
07	0.62419 (7)	0.12170 (16)	0.02375 (8)	0.0296 (4)
08	0.60282 (8)	-0.00043 (17)	-0.08372 (8)	0.0297 (4)
09	0.65482 (9)	-0.22313 (19)	-0.02666 (9)	0.0443 (5)
O10	0.72562 (8)	-0.0123 (2)	0.00907 (9)	0.0466 (5)
011	0.58417 (9)	-0.32189 (17)	0.06189 (9)	0.0377 (4)
012	0.61036 (8)	-0.18874 (17)	0.17013 (8)	0.0359 (4)
013	0.65713 (8)	-0.10327 (17)	0.08166 (8)	0.0313 (4)
Mo1	0.653779 (10)	-0.06854 (2)	-0.002152 (10)	0.03034 (6)
Mo2	0.584432 (10)	-0.17049 (2)	0.090220 (10)	0.02619 (6)
Mo3	0.549524 (9)	0.139409 (19)	0.023708 (9)	0.02377 (6)
Mo4	0.484198 (10)	0.04345 (2)	0.116550 (10)	0.02825 (6)
H5N	0.9441 (15)	-0.079 (3)	0.0245 (15)	0.052 (10)*
H6N	0.6554 (17)	0.225 (4)	0.3730 (17)	0.070 (12)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0370 (16)	0.0398 (16)	0.0520 (18)	0.0077 (13)	0.0130 (14)	0.0042 (14)
C2	0.0447 (17)	0.0339 (14)	0.0431 (16)	0.0005 (13)	0.0172 (14)	0.0047 (12)
C12	0.052 (2)	0.0518 (19)	0.054 (2)	-0.0037 (16)	0.0147 (16)	-0.0143 (16)
C3	0.0297 (13)	0.0293 (13)	0.0369 (14)	-0.0029 (11)	0.0144 (11)	-0.0021 (11)
C4	0.0350 (14)	0.0302 (13)	0.0347 (14)	-0.0015 (11)	0.0170 (12)	-0.0036 (11)
C5	0.0508 (18)	0.0310 (14)	0.0418 (16)	0.0035 (13)	0.0209 (14)	0.0030 (12)
C6	0.0415 (16)	0.0368 (15)	0.0417 (16)	0.0049 (13)	0.0124 (13)	0.0026 (12)
C7	0.0340 (15)	0.0334 (14)	0.0504 (17)	-0.0053 (12)	0.0210 (13)	-0.0030 (12)
C8	0.0348 (14)	0.0276 (13)	0.0395 (15)	-0.0044 (11)	0.0193 (12)	0.0027 (11)
C9	0.0388 (16)	0.0433 (17)	0.0463 (17)	0.0006 (13)	0.0167 (14)	0.0015 (14)
C10	0.0465 (18)	0.0465 (18)	0.060 (2)	0.0088 (15)	0.0302 (17)	0.0102 (16)
C11	0.0364 (16)	0.0445 (17)	0.0553 (19)	-0.0026 (13)	0.0135 (14)	-0.0104 (15)
C13	0.0322 (14)	0.0353 (14)	0.0350 (14)	-0.0065 (11)	0.0148 (12)	-0.0032 (11)
C14	0.0351 (14)	0.0337 (13)	0.0269 (13)	-0.0065 (11)	0.0129 (11)	0.0015 (10)
C15	0.0368 (15)	0.0476 (17)	0.0326 (15)	-0.0007 (13)	0.0151 (12)	0.0020 (12)
C16	0.057 (2)	0.0530 (19)	0.0518 (19)	0.0047 (16)	0.0328 (17)	0.0121 (16)
C17	0.090 (3)	0.054 (2)	0.050 (2)	-0.029 (2)	0.032 (2)	-0.0212 (16)
C18	0.0483 (18)	0.0533 (19)	0.0460 (18)	-0.0195 (15)	0.0201 (15)	-0.0128 (15)

N1	0.0347 (13)	0.0393 (13)	0.0417 (13)	0.0039 (10)	0.0152 (11)	0.0017 (10)
N2	0.0354 (12)	0.0281 (11)	0.0466 (13)	-0.0002 (10)	0.0228 (11)	0.0003 (10)
N3	0.0330 (12)	0.0308 (11)	0.0361 (12)	-0.0041 (9)	0.0146 (10)	-0.0018 (9)
N4	0.0344 (13)	0.0374 (13)	0.0524 (15)	0.0018 (10)	0.0184 (11)	0.0038 (11)
N5	0.0660 (19)	0.0373 (14)	0.0538 (17)	0.0026 (13)	0.0357 (16)	-0.0050 (13)
N6	0.093 (3)	0.0454 (16)	0.063 (2)	-0.0071 (16)	0.058 (2)	-0.0098 (14)
01	0.0408 (11)	0.0279 (9)	0.0389 (10)	-0.0042 (8)	0.0155 (9)	-0.0040 (8)
02	0.0472 (12)	0.0439 (12)	0.0516 (12)	-0.0061 (9)	0.0253 (10)	-0.0137 (10)
03	0.0334 (10)	0.0642 (13)	0.0275 (10)	-0.0030 (9)	0.0127 (8)	0.0045 (9)
O4	0.0249 (9)	0.0288 (9)	0.0237 (8)	-0.0023 (7)	0.0080 (7)	0.0039 (7)
05	0.0238 (8)	0.0334 (9)	0.0209 (8)	-0.0026 (7)	0.0069 (7)	0.0006 (7)
06	0.0222 (8)	0.0283 (8)	0.0248 (9)	-0.0011 (7)	0.0082 (7)	0.0016 (7)
07	0.0231 (9)	0.0346 (9)	0.0295 (9)	-0.0044 (7)	0.0082 (7)	0.0002 (7)
08	0.0257 (9)	0.0386 (10)	0.0266 (9)	-0.0013 (8)	0.0120 (7)	0.0029 (8)
09	0.0540 (13)	0.0415 (11)	0.0438 (11)	0.0116 (10)	0.0259 (10)	0.0066 (9)
O10	0.0281 (10)	0.0668 (14)	0.0460 (12)	0.0000 (10)	0.0153 (9)	0.0103 (11)
011	0.0397 (11)	0.0322 (10)	0.0408 (11)	0.0028 (8)	0.0149 (9)	-0.0013 (8)
012	0.0336 (10)	0.0447 (11)	0.0261 (9)	-0.0011 (8)	0.0079 (8)	0.0070 (8)
O13	0.0242 (9)	0.0398 (10)	0.0277 (9)	0.0014 (8)	0.0074 (7)	0.0063 (8)
Mo1	0.02537 (12)	0.03820 (13)	0.02936 (12)	0.00348 (9)	0.01259 (9)	0.00555 (9)
Mo2	0.02420 (11)	0.02897 (11)	0.02414 (11)	0.00120 (9)	0.00783 (9)	0.00379 (8)
Mo3	0.02227 (11)	0.02433 (10)	0.02358 (11)	-0.00386 (8)	0.00752 (8)	-0.00023 (8)
Mo4	0.02511 (11)	0.03664 (12)	0.02427 (11)	-0.00324(9)	0.01086 (9)	-0.00291 (9)

Geometric parameters (Å, °)

C1—C2	1.348 (4)	С16—Н16	0.9300
C1—N4	1.378 (4)	C17—N6	1.327 (5)
С1—Н1	0.9300	C17—C18	1.384 (4)
C2—N3	1.382 (3)	С17—Н17	0.9300
С2—Н2	0.9300	C18—H18	0.9300
C12—N5	1.326 (4)	N5—H5N	0.79 (3)
C12-C11	1.371 (4)	N6—H6N	0.79 (3)
C12—H12	0.9300	O1—Mo3	1.6964 (17)
C3—N4	1.323 (3)	O2—Mo4	1.7042 (19)
C3—N3	1.372 (3)	O3—Mo4	1.6934 (18)
C3—C4	1.454 (4)	O4—Mo3 ⁱ	1.9479 (16)
C4—N1	1.322 (3)	O4—Mo2	1.9753 (16)
C4—N2	1.364 (3)	O4—Mo4	2.3728 (16)
C5—C6	1.347 (4)	O5—Mo3	1.9483 (16)
C5—N2	1.373 (3)	O5—Mo4	1.9967 (16)
С5—Н5	0.9300	O5—Mo2	2.3605 (17)
C6—N1	1.376 (3)	O6—Mo3 ⁱ	2.1503 (15)
С6—Н6	0.9300	O6—Mo4 ⁱ	2.2878 (15)
C7—N2	1.457 (3)	O6—Mo2	2.3212 (15)
С7—С8	1.508 (4)	O6—Mo3	2.3995 (16)
С7—Н7А	0.9700	O6—Mo1	2.4948 (16)
С7—Н7В	0.9700	O7—Mo3	1.7390 (16)

C8—C9	1.381 (4)	O7—Mo1	2.2578 (17)
C8—C11	1.383 (4)	O8—Mo4 ⁱ	1.9163 (16)
C9—C10	1.380 (4)	O8—Mo1	1.9172 (16)
С9—Н9	0.9300	O9—Mo1	1.716 (2)
C10—N5	1.316 (4)	O10—Mo1	1.6902 (19)
C10—H10	0.9300	O11—Mo2	1.7111 (18)
C11—H11	0.9300	O12—Mo2	1.6952 (17)
C13—N3	1.448 (3)	O13—Mo2	1.9028 (17)
C13—C14	1.506 (4)	O13—Mo1	1.9155 (17)
С13—Н13А	0.9700	Mo2—Mo3 ⁱ	3.2104 (3)
C13—H13B	0.9700	Mo3—O4 ⁱ	1.9479 (16)
C14—C18	1.378 (4)	Mo3—O6 ⁱ	2.1503 (15)
C14—C15	1.391 (4)	Mo3—Mo4	3.1969 (3)
C15—C16	1.367 (4)	Mo3—Mo2 ⁱ	3.2104 (3)
С15—Н15	0.9300	Mo4—O8 ⁱ	1.9163 (16)
C16—N6	1.332 (4)	Mo4—O6 ⁱ	2.2878 (15)
C2—C1—N4	111.2 (3)	Mo3—O6—Mo1	90.14 (5)
C2—C1—H1	124.4	Mo3—O7—Mo1	119.69 (8)
N4—C1—H1	124.4	Mo4 ⁱ —O8—Mo1	117.16 (8)
C1—C2—N3	106.2 (2)	Mo2-013-Mo1	118.19 (8)
C1—C2—H2	126.9	O10—Mo1—O9	104.05 (10)
N3—C2—H2	126.9	O10—Mo1—O13	104.68 (8)
N5-C12-C11	120.1 (3)	O9—Mo1—O13	98.32 (8)
N5-C12-H12	120.0	O10—Mo1—O8	102.85 (8)
C11—C12—H12	120.0	O9—Mo1—O8	96.66 (8)
N4—C3—N3	111.8 (2)	O13—Mo1—O8	144.25 (7)
N4—C3—C4	125.0 (2)	O10-Mo1-O7	91.86 (8)
N3—C3—C4	123.2 (2)	O9—Mo1—O7	164.00 (8)
N1—C4—N2	111.4 (2)	O13—Mo1—O7	78.92 (7)
N1—C4—C3	125.0 (2)	O8—Mo1—O7	77.81 (7)
N2—C4—C3	123.5 (2)	O10-Mo1-O6	161.50 (8)
C6—C5—N2	106.2 (2)	O9—Mo1—O6	94.41 (8)
С6—С5—Н5	126.9	O13—Mo1—O6	73.39 (6)
N2—C5—H5	126.9	O8—Mo1—O6	73.24 (6)
C5—C6—N1	110.8 (3)	O7—Mo1—O6	69.65 (5)
С5—С6—Н6	124.6	O12—Mo2—O11	104.42 (9)
N1—C6—H6	124.6	O12—Mo2—O13	100.83 (8)
N2—C7—C8	112.4 (2)	O11—Mo2—O13	100.36 (8)
N2—C7—H7A	109.1	O12—Mo2—O4	100.93 (8)
С8—С7—Н7А	109.1	O11—Mo2—O4	98.40 (8)
N2—C7—H7B	109.1	O13—Mo2—O4	146.58 (7)
C8—C7—H7B	109.1	O12—Mo2—O6	161.34 (8)
H7A—C7—H7B	107.9	O11—Mo2—O6	94.06 (7)
C9—C8—C11	118.5 (3)	O13—Mo2—O6	77.93 (6)
C9—C8—C7	120.0 (2)	O4—Mo2—O6	73.36 (6)
C11—C8—C7	121.5 (2)	O12—Mo2—O5	89.34 (7)
C10—C9—C8	119.5 (3)	O11—Mo2—O5	164.76 (7)

С10—С9—Н9	120.3	O13—Mo2—O5	83.09 (7)
С8—С9—Н9	120.3	O4—Mo2—O5	72.12 (6)
N5—C10—C9	120.0 (3)	O6—Mo2—O5	72.01 (5)
N5	120.0	O12—Mo2—Mo3 ⁱ	135.65 (6)
C9—C10—H10	120.0	O11—Mo2—Mo3 ⁱ	85.77 (6)
С12—С11—С8	119.6 (3)	O13—Mo2—Mo3 ⁱ	119.95 (5)
C12—C11—H11	120.2	O4—Mo2—Mo3 ⁱ	34.80 (5)
C8—C11—H11	120.2	O6—Mo2—Mo3 ⁱ	42.03 (4)
N3—C13—C14	115.6 (2)	O5—Mo2—Mo3 ⁱ	79.71 (4)
N3—C13—H13A	108.4	O1—Mo3—O7	105.18 (8)
C14—C13—H13A	108.4	O1—Mo3—O4 ⁱ	100.78 (8)
N3—C13—H13B	108.4	O7—Mo3—O4 ⁱ	96.30 (7)
C14—C13—H13B	108.4	O1—Mo3—O5	102.49 (8)
H13A—C13—H13B	107.5	O7—Mo3—O5	97.14 (7)
C18—C14—C15	118.8 (3)	O4 ⁱ —Mo3—O5	148.94 (7)
C18—C14—C13	123.8 (3)	O1—Mo3—O6 ⁱ	99.37 (8)
C15—C14—C13	117.3 (2)	O7—Mo3—O6 ⁱ	155.43 (7)
C16—C15—C14	120.1 (3)	O4 ⁱ —Mo3—O6 ⁱ	77.92 (6)
C16—C15—H15	119.9	O5—Mo3—O6 ⁱ	78.24 (6)
C14—C15—H15	119.9	O1—Mo3—O6	174.18 (7)
N6-C16-C15	119.4 (3)	O7—Mo3—O6	80.50 (7)
N6—C16—H16	120.3	O4 ⁱ —Mo3—O6	77.02 (6)
C15—C16—H16	120.3	O5—Mo3—O6	77.78 (6)
N6—C17—C18	120.2 (3)	O6 ⁱ —Mo3—O6	74.94 (6)
N6—C17—H17	119.9	O1—Mo3—Mo4	90.96 (6)
C18—C17—H17	119.9	O7—Mo3—Mo4	133.50 (6)
C14—C18—C17	118.9 (3)	O4 ⁱ —Mo3—Mo4	123.56 (5)
C14—C18—H18	120.6	O5—Mo3—Mo4	36.38 (5)
C17—C18—H18	120.6	O6 ⁱ —Mo3—Mo4	45.65 (4)
C4—N1—C6	104.9 (2)	O6—Mo3—Mo4	85.89 (4)
C4—N2—C5	106.7 (2)	O1—Mo3—Mo2 ⁱ	89.91 (6)
C4—N2—C7	128.9 (2)	O7—Mo3—Mo2 ⁱ	131.66 (5)
C5—N2—C7	124.2 (2)	O4 ⁱ —Mo3—Mo2 ⁱ	35.37 (5)
C3—N3—C2	106.1 (2)	O5—Mo3—Mo2 ⁱ	124.50 (5)
C3—N3—C13	129.2 (2)	O6 ⁱ —Mo3—Mo2 ⁱ	46.28 (4)
C2—N3—C13	124.4 (2)	O6—Mo3—Mo2 ⁱ	85.24 (4)
C3—N4—C1	104.7 (2)	Mo4—Mo3—Mo2 ⁱ	90.620 (8)
C10—N5—C12	122.4 (3)	O3—Mo4—O2	105.07 (10)
C10—N5—H5N	120 (2)	O3—Mo4—O8 ⁱ	99.97 (8)
C12—N5—H5N	118 (2)	O2—Mo4—O8 ⁱ	100.52 (9)
C17—N6—C16	122.5 (3)	O3—Mo4—O5	99.35 (8)
C17—N6—H6N	125 (3)	O2—Mo4—O5	99.57 (8)
C16—N6—H6N	112 (3)	O8 ⁱ —Mo4—O5	147.33 (7)

Mo3 ⁱ —O4—Mo2	109.83 (8)	O3—Mo4—O6 ⁱ	158.62 (8)
Mo3 ⁱ —O4—Mo4	109.92 (7)	O2—Mo4—O6 ⁱ	96.14 (8)
Mo2—O4—Mo4	104.24 (7)	O8 ⁱ —Mo4—O6 ⁱ	78.38 (6)
Mo3—O5—Mo4	108.26 (7)	$05-M04-06^{i}$	74.06 (6)
Mo3—O5—Mo2	110.22 (7)	O3—Mo4—O4	86.94 (8)
Mo4—O5—Mo2	103.99 (7)	O2—Mo4—O4	166.31 (8)
Mo3 ⁱ —O6—Mo4 ⁱ	92.11 (6)	O8 ⁱ —Mo4—O4	83.49 (7)
Mo3 ⁱ —O6—Mo2	91.69 (6)	O5—Mo4—O4	71.51 (6)
Mo4 ⁱ —O6—Mo2	162.46 (8)	O6 ⁱ —Mo4—O4	71.68 (6)
Mo3 ⁱ —O6—Mo3	105.06 (6)	O3—Mo4—Mo3	134.70 (6)
Mo4 ⁱ —O6—Mo3	98.29 (6)	O2—Mo4—Mo3	87.58 (7)
Mo2—O6—Mo3	97.23 (6)	O8 ⁱ —Mo4—Mo3	120.61 (5)
Mo3 ⁱ —O6—Mo1	164.78 (8)	O5—Mo4—Mo3	35.36 (5)
$Mo4^{i}$ — $O6$ — $Mo1$	86.20 (5)	O6 ⁱ —Mo4—Mo3	42.23 (4)
Mo2—O6—Mo1	85.65 (5)	O4—Mo4—Mo3	79.18 (4)
N4—C1—C2—N3	0.4 (3)	Mo3—O6—Mo2—Mo3 ⁱ	105.42 (7)
N4—C3—C4—N1	174.9 (3)	Mo1—O6—Mo2—Mo3 ⁱ	-164.99 (8)
N3—C3—C4—N1	-1.9 (4)	Mo3-O5-Mo2-O12	166.34 (9)
N4—C3—C4—N2	-1.2 (4)	Mo4-O5-Mo2-O12	-77.83 (8)
N3—C3—C4—N2	-178.0(2)	Mo3—O5—Mo2—O11	-38.8 (3)
N2-C5-C6-N1	0.2 (3)	Mo4	77.0 (3)
N2—C7—C8—C9	-161.8 (2)	Mo3-O5-Mo2-O13	65.35 (8)
N2—C7—C8—C11	20.1 (4)	Mo4-O5-Mo2-O13	-178.82 (8)
C11—C8—C9—C10	-0.4 (4)	Mo3—O5—Mo2—O4	-91.95 (8)
C7—C8—C9—C10	-178.5 (3)	Mo4—O5—Mo2—O4	23.89 (6)
C8—C9—C10—N5	-0.6 (4)	Mo3	-14.16 (7)
N5-C12-C11-C8	-0.1 (5)	Mo4—O5—Mo2—O6	101.68 (7)
C9—C8—C11—C12	0.7 (4)	Mo3—O5—Mo2—Mo3 ⁱ	-56.87 (6)
C7—C8—C11—C12	178.8 (3)	Mo4—O5—Mo2—Mo3 ⁱ	58.97 (5)
N3-C13-C14-C18	-7.0 (4)	Mo1-07-Mo3-01	179.96 (9)
N3-C13-C14-C15	175.5 (2)	Mo1—O7—Mo3—O4 ⁱ	-77.03 (10)
C18—C14—C15—C16	-1.4 (4)	Mo1-07-Mo3-05	74.91 (9)
C13-C14-C15-C16	176.2 (2)	Mo1—O7—Mo3—O6 ⁱ	-2.4 (2)
C14—C15—C16—N6	-0.5 (4)	Mo1-07-Mo3-06	-1.37 (8)
C15—C14—C18—C17	2.7 (4)	Mo1-07-Mo3-Mo4	73.62 (11)
C13-C14-C18-C17	-174.8 (3)	Mo1-07-Mo3-Mo2 ⁱ	-76.20 (10)
N6-C17-C18-C14	-2.0 (5)	Mo4—O5—Mo3—O1	74.24 (9)
N2-C4-N1-C6	2.3 (3)	Mo2-05-Mo3-01	-172.64 (8)
C3—C4—N1—C6	-174.3 (3)	Mo4—O5—Mo3—O7	-178.43 (8)
C5-C6-N1-C4	-1.5 (3)	Mo2—O5—Mo3—O7	-65.30 (8)
N1-C4-N2-C5	-2.2 (3)	$M_04-05-M_03-04^i$	-63.43 (16)
C3—C4—N2—C5	174.4 (2)	$Mo2-O5-Mo3-O4^{i}$	49.69 (16)
N1—C4—N2—C7	-177.1 (2)	Mo4-05-Mo3-06 ⁱ	-22.90 (7)
C3—C4—N2—C7	-0.5 (4)	Mo2—O5—Mo3—O6 ⁱ	90.22 (7)

C6—C5—N2—C4	1.2 (3)	Mo4—O5—Mo3—O6	-99.81 (8)
C6—C5—N2—C7	176.4 (2)	Mo2—O5—Mo3—O6	13.31 (6)
C8—C7—N2—C4	79.5 (3)	Mo2—O5—Mo3—Mo4	113.12 (10)
C8—C7—N2—C5	-94.6 (3)	Mo4—O5—Mo3—Mo2 ⁱ	-24.40 (10)
N4—C3—N3—C2	0.0 (3)	Mo2—O5—Mo3—Mo2 ⁱ	88.72 (7)
C4—C3—N3—C2	177.2 (2)	Mo3 ⁱ —O6—Mo3—O7	-179.56 (8)
N4—C3—N3—C13	-174.4 (2)	Mo4 ⁱ —O6—Mo3—O7	-85.10 (7)
C4—C3—N3—C13	2.8 (4)	Mo2—O6—Mo3—O7	86.71 (7)
C1—C2—N3—C3	-0.2 (3)	Mo1—O6—Mo3—O7	1.08 (6)
C1—C2—N3—C13	174.5 (2)	Mo3 ⁱ —O6—Mo3—O4 ⁱ	-80.77 (7)
C14—C13—N3—C3	-85.4 (3)	Mo4 ⁱ —O6—Mo3—O4 ⁱ	13.69 (6)
C14—C13—N3—C2	101.1 (3)	Mo2—O6—Mo3—O4 ⁱ	-174.50 (7)
N3—C3—N4—C1	0.3 (3)	Mo1—O6—Mo3—O4 ⁱ	99.87 (6)
C4—C3—N4—C1	-176.9 (3)	Mo3 ⁱ —O6—Mo3—O5	80.93 (7)
C2—C1—N4—C3	-0.4 (3)	Mo4 ⁱ —O6—Mo3—O5	175.39 (7)
C9-C10-N5-C12	1.3 (5)	Mo2—O6—Mo3—O5	-12.80 (6)
C11-C12-N5-C10	-1.0 (5)	Mo1	-98.43 (6)
C18-C17-N6-C16	0.0 (5)	Mo3 ⁱ —O6—Mo3—O6 ⁱ	0.0
C15-C16-N6-C17	1.3 (5)	Mo4 ⁱ —O6—Mo3—O6 ⁱ	94.46 (7)
Mo2-O13-Mo1-O10	-179.55 (10)	Mo2—O6—Mo3—O6 ⁱ	-93.73 (7)
Mo2—O13—Mo1—O9	-72.58 (11)	Mo1—O6—Mo3—O6 ⁱ	-179.36 (9)
Mo2—O13—Mo1—O8	41.23 (18)	Mo3 ⁱ —O6—Mo3—Mo4	45.06 (5)
Mo2-013-Mo1-07	91.42 (10)	Mo4 ⁱ —O6—Mo3—Mo4	139.52 (5)
Mo2-013-Mo1-06	19.57 (8)	Mo2—O6—Mo3—Mo4	-48.67 (4)
Mo4 ⁱ O8Mo1O10	179.11 (10)	Mo1—O6—Mo3—Mo4	-134.30 (4)
Mo4 ⁱ	73.01 (11)	Mo3 ⁱ —O6—Mo3—Mo2 ⁱ	-45.91 (5)
Mo4 ⁱ —O8—Mo1—O13	-41.29 (18)	Mo4 ⁱ —O6—Mo3—Mo2 ⁱ	48.55 (4)
Mo4 ⁱ	-91.75 (10)	Mo2—O6—Mo3—Mo2 ⁱ	-139.64 (5)
Mo4 ⁱ	-19.61 (8)	Mo1—O6—Mo3—Mo2 ⁱ	134.73 (4)
Mo3-O7-Mo1-O10	-179.44 (10)	Mo3—O5—Mo4—O3	-179.00 (9)
Mo3—O7—Mo1—O9	6.6 (3)	Mo2	63.79 (9)
Mo3-07-Mo1-013	-74.85 (10)	Mo3—O5—Mo4—O2	-71.85 (10)
Mo3—O7—Mo1—O8	77.82 (10)	Mo2—O5—Mo4—O2	170.94 (8)
Mo3—O7—Mo1—O6	1.39 (8)	Mo3—O5—Mo4—O8 ⁱ	55.44 (16)
Mo3 ⁱ —O6—Mo1—O10	178.9 (3)	Mo2—O5—Mo4—O8 ⁱ	-61.77 (14)
Mo4 ⁱ —O6—Mo1—O10	94.8 (2)	Mo3—O5—Mo4—O6 ⁱ	21.86 (7)
Mo2-O6-Mo1-O10	-100.7 (2)	Mo2—O5—Mo4—O6 ⁱ	-95.35 (7)
Mo3—O6—Mo1—O10	-3.5 (3)	Mo3—O5—Mo4—O4	97.44 (8)
Mo3 ⁱ —O6—Mo1—O9	2.9 (3)	Mo2	-19.77 (5)
Mo4 ⁱ —O6—Mo1—O9	-81.12 (8)	Mo2-O5-Mo4-Mo3	-117.21 (10)
Mo2	83.34 (7)	Mo3 ⁱ —O4—Mo4—O3	165.30 (9)
Mo3-06-Mo1-09	-179.42 (7)	Mo2—O4—Mo4—O3	-77.04 (8)
Mo3 ⁱ —O6—Mo1—O13	-94.4 (3)	Mo3 ⁱ —O4—Mo4—O2	-43.0 (4)

Mo4 ⁱ —O6—Mo1—O13	-178.50 (7)	Mo2—O4—Mo4—O2	74.6 (3)
Mo2-O6-Mo1-O13	-14.04 (6)	Mo3 ⁱ —O4—Mo4—O8 ⁱ	64.90 (8)
Mo3—O6—Mo1—O13	83.20 (7)	Mo2—O4—Mo4—O8 ⁱ	-177.44 (8)
Mo3 ⁱ —O6—Mo1—O8	98.6 (3)	Mo3 ⁱ —O4—Mo4—O5	-93.79 (8)
Mo4 ⁱ —O6—Mo1—O8	14.51 (6)	Mo2—O4—Mo4—O5	23.87 (7)
Mo2—O6—Mo1—O8	178.97 (7)	Mo3 ⁱ —O4—Mo4—O6 ⁱ	-14.99 (7)
Mo3—O6—Mo1—O8	-83.79 (7)	Mo2—O4—Mo4—O6 ⁱ	102.67 (7)
Mo3 ⁱ —O6—Mo1—O7	-178.5 (3)	Mo3 ⁱ —O4—Mo4—Mo3	-58.03 (6)
Mo4 ⁱ —O6—Mo1—O7	97.43 (6)	Mo2—O4—Mo4—Mo3	59.63 (5)
Mo2—O6—Mo1—O7	-98.11 (6)	O1—Mo3—Mo4—O3	-108.60 (12)
Mo3—O6—Mo1—O7	-0.87 (5)	O7—Mo3—Mo4—O3	3.54 (13)
Mo1-013-Mo2-012	178.35 (10)	O4 ⁱ —Mo3—Mo4—O3	147.77 (11)
Mo1-013-Mo2-011	71.32 (11)	O5—Mo3—Mo4—O3	1.39 (12)
Mo1-013-Mo2-04	-51.82 (18)	O6 ⁱ —Mo3—Mo4—O3	149.20 (12)
Mo1-013-Mo2-06	-20.65 (9)	O6—Mo3—Mo4—O3	76.30 (11)
Mo1-013-Mo2-05	-93.66 (10)	Mo2 ⁱ —Mo3—Mo4—O3	161.48 (10)
Mo1—O13—Mo2—Mo3 ⁱ	-19.76 (12)	O1—Mo3—Mo4—O2	0.31 (9)
Mo3 ⁱ —O4—Mo2—O12	-176.50 (8)	O7—Mo3—Mo4—O2	112.46 (10)
Mo4—O4—Mo2—O12	65.77 (8)	O4 ⁱ —Mo3—Mo4—O2	-103.32 (9)
Mo3 ⁱ —O4—Mo2—O11	-69.94 (9)	O5—Mo3—Mo4—O2	110.30 (11)
Mo4—O4—Mo2—O11	172.33 (8)	O6 ⁱ —Mo3—Mo4—O2	-101.89 (9)
Mo3 ⁱ —O4—Mo2—O13	53.69 (16)	O6—Mo3—Mo4—O2	-174.78 (8)
Mo4—O4—Mo2—O13	-64.03 (14)	Mo2 ⁱ —Mo3—Mo4—O2	-89.60 (7)
Mo3 ⁱ —O4—Mo2—O6	21.81 (7)	O1—Mo3—Mo4—O8 ⁱ	101.11 (9)
Mo4—O4—Mo2—O6	-95.92 (7)	O7—Mo3—Mo4—O8 ⁱ	-146.74 (10)
Mo3 ⁱ —O4—Mo2—O5	97.78 (8)	O4 ⁱ —Mo3—Mo4—O8 ⁱ	-2.52 (9)
Mo4—O4—Mo2—O5	-19.95 (5)	O5—Mo3—Mo4—O8 ⁱ	-148.90 (10)
Mo4—O4—Mo2—Mo3 ⁱ	-117.73 (10)	O6 ⁱ —Mo3—Mo4—O8 ⁱ	-1.09 (8)
Mo3 ⁱ —O6—Mo2—O12	-93.0 (2)	O6—Mo3—Mo4—O8 ⁱ	-73.98 (7)
Mo4 ⁱ —O6—Mo2—O12	164.5 (2)	Mo2 ⁱ —Mo3—Mo4—O8 ⁱ	11.20 (6)
Mo3—O6—Mo2—O12	12.4 (2)	O1—Mo3—Mo4—O5	-109.99 (10)
Mo1	102.0 (2)	O7—Mo3—Mo4—O5	2.15 (11)
Mo3 ⁱ —O6—Mo2—O11	79.11 (8)	O4 ⁱ —Mo3—Mo4—O5	146.38 (10)
Mo4 ⁱ —O6—Mo2—O11	-23.4 (3)	O6 ⁱ —Mo3—Mo4—O5	147.81 (10)
Mo3—O6—Mo2—O11	-175.48 (7)	O6—Mo3—Mo4—O5	74.92 (9)
Mo1-06-Mo2-011	-85.89 (7)	Mo2 ⁱ —Mo3—Mo4—O5	160.09 (8)
Mo3 ⁱ —O6—Mo2—O13	178.84 (7)	O1—Mo3—Mo4—O6 ⁱ	102.20 (9)
Mo4 ⁱ —O6—Mo2—O13	76.4 (3)	O7—Mo3—Mo4—O6 ⁱ	-145.65 (10)
Mo3—O6—Mo2—O13	-75.74 (7)	O4 ⁱ —Mo3—Mo4—O6 ⁱ	-1.43 (8)
Mo1-O6-Mo2-O13	13.85 (6)	O5—Mo3—Mo4—O6 ⁱ	-147.81 (10)
Mo3 ⁱ —O6—Mo2—O4	-18.46 (6)	O6—Mo3—Mo4—O6 ⁱ	-72.89 (8)
Mo4 ⁱ —O6—Mo2—O4	-120.9 (3)	Mo2 ⁱ —Mo3—Mo4—O6 ⁱ	12.29 (6)

Mo3—O6—Mo2—O4	86.95 (7)	O1—Mo3—Mo4—O4	176.80 (7)
Mo1	176.54 (7)	O7—Mo3—Mo4—O4	-71.06 (8)
Mo3 ⁱ —O6—Mo2—O5	-94.59 (6)	O4 ⁱ —Mo3—Mo4—O4	73.17 (8)
Mo4 ⁱ —O6—Mo2—O5	162.9 (3)	O5—Mo3—Mo4—O4	-73.21 (9)
Mo3—O6—Mo2—O5	10.83 (5)	O6 ⁱ —Mo3—Mo4—O4	74.60 (7)
Mo1-06-Mo2-05	100.42 (5)	O6—Mo3—Mo4—O4	1.70 (5)
Mo4 ⁱ —O6—Mo2—Mo3 ⁱ	-102.5 (3)	Mo2 ⁱ —Mo3—Mo4—O4	86.88 (4)
Symmetry codes: (i) $-x+1, -y, -z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N5—H5N…O11 ⁱⁱ	0.79 (3)	2.09 (3)	2.801 (3)	150 (3)
N6—H6N···O9 ⁱⁱⁱ	0.79 (3)	2.29 (4)	2.923 (3)	138 (3)
Symmetry codes: (ii) $-x+3/2$, $-y-1/2$, $-z$; (iii) x	, -y, z+1/2.			

Fig. 2